Grinnell College senior Queenster Nartey, with Terri L. Kelling, infection prevention coordinator at Grinnell Regional Medical Center, collects samples for research on copper and infection prevention. (Justin Hayworth/Grinnell College)

Ancient Egyptians used copper to sterilize chest wounds and drinking water. Greeks, Romans and Aztecs relied on copper compounds to treat burns, headaches and ear infections. Thousands of years later, the ancient therapeutic is being embraced by some hospitals because of its ability to kill bacteria and other microbes on contact, which can help reduce deadly infections.

At least 15 hospitals across the country have installed, or are considering installing, copper components on “high-touch” surfaces easily contaminated with microbes — faucet handles on sinks, cabinet pulls, toilet levers, call buttons and IV poles.

“We’ve known for a long time that copper and other metals are effective in killing microbes, so it wasn’t a great leap to incorporate copper surfaces into hospitals,” said John Lynch, medical director of infection control at Seattle’s Harborview Medical Center, which is redesigning a waste-disposal room to incorporate copper on light switches and door handles.

For many hospitals, the death of Ebola patient Thomas Eric Duncan last year at a Dallas hospital heightened concerns — two nurses caring for him caught the virus because of poor infection control. And even before that, public health officials had identified nearly two dozen dangerous pathogens — many of them resistant to virtually all antibiotics — whose spread in health facilities and elsewhere could result in potentially catastrophic consequences.

Queenster Nartey counts bacterial colonies in a non-copper sink sample as part of research on copper’s role in reducing infections. (Justin Hayworth/Grinnell College)

They include MRSA, a potentially deadly infection that is increasing in community settings; VRE, which can cause a variety of infections; and C. diff, which causes life-threatening diarrhea and sends 250,000 people to the hospital every year.

On any given day, about 1 in 25 patients in acute-care hospitals has at least one health-care-associated infection, according to the Centers for Disease Control and Prevention. Pneumonia and surgical-site infections are among the most common. In 2011, about 75,000 patients with health-care-associated infections died in the hospital.

Copper can kill or inactivate a variety of pathogens by interacting with oxygen and modifying oxygen molecules. In bacteria, this disrupts the outer layer, damaging the genetic material and cell machinery, which can lead to cell death. A recent study found that copper also destroys norovirus.

There has been only one published clinical trial showing how copper reduces infections in hospitals. The results, however, were striking: Researchers said the study, which took place between July 2010 and June 2011, showed that copper surfaces reduced infection rates by 58 percent.

Now, the CDC is pressing for more research. Last week, it held a roundtable on environmental infection control in preventing Ebola and other health-care-associated infections. Officials, who are exploring copper and other technologies, are working with hospitals, academics and the copper industry.

The Defense Department, which funded the first clinical trial on copper and hospital-acquired infections, is researching copper’s effectiveness against one type of bacteria, acinetobacter, which can cause pneumonia or bloodstream infections among critically ill patients, including wounded soldiers returning from the battlefield.

Many experts have concluded that traditional methods for reducing hospital-acquired infections, such as hand washing, aren’t enough, because people don’t always do what they are supposed to do and many pathogens can survive for long periods on surfaces. That’s why hospitals are experimenting with other ways to destroy them, including using ultraviolet light and hydrogen peroxide vapor to target germs in nooks and crannies not easily reached by cleaning crews.